Objective:
To produce a given quantity as inexpensively as possible.
constrained optimization
Production Function

$$
\begin{gathered}
Q=f(K, L)=K^{\cdot 5} L^{.5} \\
\text { capital labor }
\end{gathered}
$$

Constrahed Optimization Recall: Our goal is to produce a given quantity $\left(Q^{*}\right)$ for the lowest cast.
min Cost
sit. $Q=Q^{*}$
min RK+WL
st. $f(K, L)=Q^{*}$
How can we salve this? What should be true?
ext say the solution is K^{*}, L^{*}. What must be true?

$$
\begin{aligned}
& E X, Q Q^{*}=10 \quad W=2 \quad R=4 \\
& L=0, K=0, Q=0 \quad M P_{L}=4 \quad M P_{K}=2 \\
& C=0 \\
& L=1 K=0, Q=4 \quad M P_{L}=2 \quad M P_{K}=3 \\
& C=2 \\
& L=2 \quad K=0 Q=6 \quad M P_{L}=1 \quad M P_{K}=4 \\
& C=4 \\
& L=2 K=1 \quad Q=10 \\
& C=8 \quad \text { Here We choose the max } \\
& \text { between } \frac{M P_{L}}{W} \text { and } \frac{M P_{K}}{r}
\end{aligned}
$$

- We want to maximize marginal product per cost
- note: cost (U,R) are constant, if marginal product is decreasing, then $\frac{m p}{\cos t}$ decreases. This usually leads to an interior solution
- If we have aus inter ins solution,

$$
\begin{aligned}
& \frac{M U_{x}}{P_{x}}=\frac{M U_{y}}{P_{y}} \rightarrow \frac{M U_{x}}{M U_{y}}=\frac{P_{x}}{P_{y}} \\
& \frac{M P_{L^{*}}}{W}=\frac{M P_{K^{*}}}{R}
\end{aligned}
$$

- Our solution should, for all inputs Used have $\frac{M P}{\text { cost }}$ be equal, and
\sum to $\frac{M P}{\text { cost of any unused input. }}$

Solving a Cost Min problem

$$
\text { ex: } \begin{aligned}
Q & =f(K, L)=K^{\cdot 5} L^{5} \\
C=R K+W L ; Q^{*} & =5 \\
W & =50,000 \\
R & =1
\end{aligned}
$$

goal: min RK+WL

$$
\text { St. } K^{5} L^{5}=5
$$

1. Find MP, M M P_{k} (ARTS)

$$
\begin{gathered}
Q=K^{-5} L^{-5} \\
M R T S=\frac{M P_{L}}{M P_{K}}=\frac{5 K^{-5} L^{-5}}{5 K^{-5} L^{-5}}=\frac{K}{L}
\end{gathered}
$$

2. find ratio of prices (slope of isocost inc)

$$
- \text { Slope }=\frac{W}{R}=50,000
$$

3. Set $(1)=(2)$ to ensure $\frac{M P}{\text { Cast }}$ is minimized
note: if this is not possible \rightarrow corner solution

$$
50,000=\frac{K}{L}
$$

(1) $K=50,000 \mathrm{~L}$
4.

3 vars
Zen. Instead 2
System of equations with target quantity
(2) $5=K^{5} L^{5}$

$$
\begin{aligned}
& 5=(50,000 L)^{.5} L^{.5} \\
& 5=\sqrt{50,000} L \\
& L=\frac{5}{\sqrt{50,000}}
\end{aligned}
$$

(1) $K=50,000 \cdot \frac{5}{\sqrt{50,000}}$

$$
\text { Say } Q=f(K, L)=K^{.25} L^{75}, R=4, W=2 .
$$

want to produce 80 units.
What is the solution to the cost minimization problem?

$$
\begin{aligned}
& \frac{M P_{L}}{M P_{K}}=\frac{.75 K^{.25} L^{-.25}}{25 K^{-.75} L^{.75}}=\frac{3 K}{L}=M R T S_{C K} \\
& \frac{-\omega}{R}=\frac{-2}{4}=\text { Slope of scout } \quad \frac{-2}{4}=\frac{3 K}{L}
\end{aligned}
$$

$$
\begin{aligned}
& L=-6 K, \underset{\substack{\text { ned } \\
-5070}}{-7} \frac{2}{4}=\frac{3 K}{L} \rightarrow L=6 K \\
& 80=K^{-25} L^{.75} \\
& 80=K^{.25}(6 K)^{.75} \\
& 80=K^{.25} K^{75} 6^{.75} \\
& \frac{80}{6^{.75}}=K \\
& K \approx 20.8 \quad L=6.20 .8 \approx 126.3
\end{aligned}
$$

Special Cobb Douglas Property

