4.4 Combining Utility
income + Prices
Constrained Optimization

Feasible: A, B, D, E
Infeasible: F, C, G, H, I

$$
I>\varnothing, H\rangle F, D \mid C>E, A, B
$$

D is the best bundle we can afford.
It is the utility-matimizing bundle subject to our budget constraint.

Utility Max. Bundle - A

- B

Observation: The budget constraint is tangent to the indifference curve at the utility maximing bundle.

Lo The slope of the budget constraint is equal to the Marginal rate of substitution at the utility max bundle.

Slope of budget constrict $=-M R S_{x y}$

$$
\frac{-P_{x}}{P_{y}}=\frac{-M U_{x}}{M U_{y}}
$$

1 St. Income $=\operatorname{cost}=P_{x} Q_{x}+P_{y} Q_{y}$ this it fixed

$$
\begin{aligned}
& M_{x} P_{y}=P_{x} M U_{y} \\
& \frac{M U_{x}}{P_{x}}=\frac{M U_{y}}{P_{y}}
\end{aligned}
$$

7
Marginal utility per \$ spent is
the same for Goth gonds!
Implications:

If everyone is utility maximizing and face the Same, lineal, prices
then everyone has the same MRS between the two goods

So long as they are consuming atleast some of each.

- Special cases i Corner solutions

$$
U(X, Y)=5 x+2 y
$$

Income $=\$ 50$

$$
\begin{aligned}
& P_{x}=\$ 4 \\
& P_{y}=\$ 1
\end{aligned}
$$

$$
\begin{aligned}
& M R S_{x y}=\frac{-P_{x}}{P_{y}} \\
& \frac{M U_{x}}{M U_{y}}=\frac{-4}{1} \\
& \frac{5}{2}=\frac{-4}{1}
\end{aligned}
$$

Spend all $\$$ on $y: 50 \rightarrow 100$ Spend all 5 on $x: 12,5 \rightarrow 62,5$
$(0,50)$

$$
U(x, y)=x \cdot y
$$

Incame $=\$ 10$

$$
\begin{aligned}
& P_{x}=\$ 2 \\
& P_{y}=\$ 1
\end{aligned}
$$

$$
\begin{aligned}
-M R S_{x y} & =\frac{-p_{x}}{p_{y}} \\
\frac{y}{x} & =\frac{z}{1}
\end{aligned}
$$

$$
\frac{y}{x}=2 \quad(x)
$$

Remember need to spend all our income.

$$
\begin{aligned}
& \$ 10=P_{x} Q_{x}+P_{y} Q_{y} \\
& 10=2 \cdot x+1 \cdot y \\
& \frac{y}{x}=2 \rightarrow y=2 x \\
& \left\{\begin{array}{l}
y=2.25 \\
y=5
\end{array}\right. \\
& 10=2 x+2 x \quad 10=4 x \\
& 10.5=x
\end{aligned}
$$

$$
\begin{aligned}
& U(X, Y)= X^{5} Y^{5} \\
& \text { Income }=\$ 100 \\
& P_{x}= \$ 5 \\
& P_{y}= \$ 2 \\
& \text { Step } 1: M R S_{x y}=\frac{P_{x}}{P_{y}} \\
& \frac{M U x}{M U_{y}}=\frac{P_{x}}{P_{y}} \\
& \frac{.5 X^{-5} Y^{5}}{5 X^{5} Y^{-5}}=\frac{5}{2}
\end{aligned}
$$

$$
\frac{y}{x}=\frac{5}{2}
$$

Step 2: Income $=$ Cost

$$
\begin{aligned}
& \$ 100=P_{x} Q_{x}+P_{y} Q_{y} \\
& 100=5 x+2 y
\end{aligned}
$$

Step 3: Solve Systems of equations

$$
\begin{aligned}
& Y=\frac{5}{2} x_{\sigma} \quad Y=\frac{5}{2} \cdot 10 \\
& 100=5 x+2\left(\frac{5}{2} x\right) \\
& 100=5 x+5 \gamma \\
& 100=10 x \rightarrow x=10 \\
& (10,25)
\end{aligned}
$$

